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The automation of the process of learning from examples has been of intense interest to AI

researchers for a long time. This interest, together with recent breakthroughs in understanding the

learning capabilities of "neural networks", or massively parallel distributed processing systems,

have rekindled interest in neural network research. Additional interest stems from the possibility

of constructing systems that learn in problem domains for which we have little understanding.

Such systems therefore offer the additional attraction of enriching our understanding of a

particular problem domain.

Reading aloud is among the problems that do not seem amenable to solution by use of standard

algorithmic procedures. NETtalk (Sejnowski and Rosenberg, 1986) demonstrated that it is

possible for a parallel network of computing units to be trained to form internal representations of

the regularities in the training set. The NETtalk experiment opens the door to a host of questions

such as what kind of network architecture is really suited to solving problems of this nature or

what learning strategies could be used. In particular, we may ask whether it is possible to devise a

system based on distributed representations that will be able to not only form abstractions of

regularities in the training set but also translate these to other test data to show equally good
generalization.

We attempt to solve the same text-to-phoneme mapping problem using Sparse Distributed
Memory (Kanerva, 1984). We discuss an iterative supervised learning scheme that involves

modificafon of thresholds of output units and changes in the data counters. (This is a

modification of the generalized delta rule for the SDM case). A method is discussed to solve

problems arising out of highly correlated real world data sets. The scheme is compared with

related models. The network is trained using this scheme with examples drawn from informal

speech. Performance of the trained network compares favorably with NETtalk. The trained
network shows good generalization.

This research was supported in part by NASA co-operative agreement, NCC 2-408, with the

Universities Space Research Association and was carried out at the Research Institute for

Advanced Computer Science, NASA Ames Research, Moffett Field, CA 94035
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I

Introduction

The automation of the process of learning from examples has been of

Intense interest to AI researchers for along time (see for example, Winston

(1975), Michalski and Chilausky (1980), Mitchell (]982)). Thisinterest, together with

recent breakthroughs In understanding the learning capabilities of 'neural

networks', or massively parallel distributed processing systems, have rekindled

Interest in neural network research. Additional interest stems from the possibility

of constructing systems that learn in problem domains for which we have little

understanding (see for example, Sejnowski and Rosenberg (1986), Tesauro

and Sejnowski (19881:)), Elman and Zipser (1988), Plaut and Hinton (1987)). Such

systems therefore offer the additional attraction of enriching our understanding

of a particular problem domain.

In the following report we describe an attempt to solve a problem of

text-to-phoneme mapping, which does not appear amenable to solution by

use of standard algorithmic procedures. We describe experiments based on a

relatively novel model of distributed processing. We show that this model

(Sparse Distributed Memory or SDM ) can be used In an Iterative supervised

learning mode to solve our problem. We suggest additional Improvements

aimed at obtaining better performance. The title 'Learning to Read Aloud' has

been used in a restricted sense to refer to pronouncing written text, i.e.,

mapping text to phonemes. No attempt at any 'graphemic recognition' is



included in this. Some other studies address this aspect of the problem (See,

Reggia and Bemdt, 1985).

This report ts structured as follows: In the first section, we describe some

of the problems associated with converting text to speech, Second section

contains a brief description of parallel distributed processing with a description

of NETtalk, while the third section describes the particular model of distributed

processing that is used for solving the text-to-phoneme problem. Following this,

in section four, we describe the main results obtained in the experiments using

SDM. The learning scheme is described in detail. In section five, we describe the

design decisions and contrast them wffh those of NETtalk. Then, in section six,

we review some of the important related issues which should be raised,

understood and addressed in further work. In Appendix A, we show how SDM

can be viewed as a three-layered network and show how the learning rule is a

modification of the generalized delta rule, as applied to the case of SDM. In

Appendix B, we give a list of symbols used In the transcriptions. Finally, in

Appendix C, we describe the performance of the learning scheme on the

"parity problem ".

2
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Text-to-speech

ONE

1.1 Introduction

Reading aloud is among the problems that cannot be easily solved by

conventional computing methods. An automated procedure to convert

unrestricted text to speech can lead to a host of exciting new applications.

Possible applications include:

I. Reading machines for the blind. These are already commercially

available Gelesensory Systems Inc.)

2. Transmitting information from data-bases via telephone lines for

consumer applications (e.g., banks, airline reservations, and

weather ).

3. *Talking" books to teach reading.

4. *Talking" computer terminals and instrument panels.

5. Personal speech prostheses for use by nonvocal persons.

The task of developing an automated text-to-speech procedure is

complex for various reasons. From the point of view of producing natural

sounding speech, the simplest and the most effective way Is to employ a

dictionary of commonly used words. Dictionan/lookup is successful for small

vocabularies, but for any natural language, there Is no such thing as a complete

vocabulary, since words are continuously being added to the lexicon while



othersare dropped. Ina language such as English,usingletter-to-soundrules to

convert text to speech Isunsatisfactorybecause the underlying linguistic

structureisignored. An approach using letter-to-soundrulesalso faces the

problem thatthe most frequentlyoccurringwords inthe language violatethese

rules.In order to attain high performance many systems have to relyupon

complex linguisticanalysis (Allen,,1985) and a large varietyof ad hoc rules.

However, syntacticanalysisisdifficultsince natural languages have context

sensitivegrammars. In speech, stressrhythm and Inflexionhelp Inproviding a

listenerwith valuable information. It is almost impossible to convey this

informatlonInspeech thatIsautomaticallygenerated from unrestrictedtext.

Some of the difficultlesinspeech synthesisas wellas speech recognition

arisefrom the difficultiesinprocessingthe underlying naturallanguages. Natural

languages contain a large number of contextual rules,as wellas exceptions to

these rules.Schemes using distributed representations and distributed

processing are wellsuitedto solvingsuch problems since they are sensitiveto

context and exception.Many ofthe problems inlanguage processlngdeal with

the syntax. Dlstributedrepresentatlons and distributedprocessing offer a

promising approach to solvingthese. For Interestingwork in thisarea, see,

Hanson and Kegl (1987),and Fanty (1985).

In laterparts of thisreport,distributedrepresentatlonsand distributed

processingare discussedIngreaterdetail.Distributeclrepresentationsare being

increasingly used to solve speech related problems, notably speech

recognition problems. For some of the work in thisarea, see Bourlancl and

4



Wellekens(1987), Cohen et al.(1987), Elman and Zipser (1988),Tank and

Hopfield (1987),and Waibel etal.(1987).

Although the work dlscussed In thisreport addresses few of the

problems that have been discussedso far,itoffersa new approach to solving

the text-to-speech problem. Clearlymuch work remalns to be done. Much

furtherresearch isneeded inthisdifficultarea inorder to arffveat a method that

can overcome the difficultiesmentioned.

5
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Parallel Distributed Processing

TWO

Computers are betterthan humans at certainkindsof tasks,forexample,

performing complex numerical computations or manlpulating long stringsof

symbols. Livlngorganisms, however, are far superiorto computers In certain

areas of perceptlon and cognition.Humans can recognize a familiarperson in

differentclothes or in a crowd or with a differenthair style.Conventional

computers cannot match human beings in such tasks. Distributed

representatlonsand distributedprocesslngoffera way to mlmlc some of these

human abilitiesto a certainextent.

Hubert Dreyfus and StuartDreyfus (1986)discussa hierarchy of human

skillswith the novice at the bottom and expert at the top. In theirmodel,

problem-solvlngat the lowestskilllevelIscharacterized by applicationof basic

rulesto attaina deslredgoal. At the highestskilllevelgoal attainment Issought

through recallof abstractionsof similarpast situationsand the memories of

relatedpast actions.

There seems to be a growing consensus among researchers that

networks of distributed processing units, I.e., artificial neural nets, can be used for

storage and retrieval of patterns to mimic the human abilities of formulating

abstractions and recalling them when needed. NETtalk (Sejnowski and

Rosenberg, 1986)demonstrates that an artificialneuralnetwork can indeed be

used to form such abstractions,also called internalrepresentations,and that
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they can be retrievedwhen needed. InNET'talkthese internalrepresentationsare

formed structurallyinthe network.

Many models of distributedprocessing use a large number of very

slmple processing units.Uke neurons Inthe bralnthese processlng unitstake a

number of inputsfrom differentunitsand compute a functionofthese inputs.

Since these are viewed as very simple computational models of a neuron's

Input output behavior they are sometimes referred to as 'neurons' and a network

Of such processing units is sometimes referred to as a 'neural network'.

2.1 Neural Networks

A computing unit receives a number of inputs. It computes some

function of these inputs called the _ransfer function'. The transfer function maybe

a threshold logic unit or a slgmoidal transfer function.

Different networks can be formed based on different connectivity

patterns(i.e.,Interconnecflonsamong the computing elements) and different

firingrules(i.e.,the particularfunctioncomputed by the computing element).

A network of such computing elements can be formed indifferentlayers

such thatcomputing elements ineach layersend theiroutput to each unitinthe

next layer.ThisIsa feed-forward network.There are no interconnectionswithina

given layer. Units in the first layer receive input from outside the network. This input

Is a vector that is to be associated with an output vector of the last layer of the

network. In particular, an Input to the first layer is clamped. Based on the input the

units In the first layer produce some output which is the Input to the next layer. This



InputInturnproduces some outputatthe second layerwhich Isfed forward inthe

same manner untilan output isproduced atthe finallayer.

8

2.2 Descrlptlon of NETtalk

NETtaik employed a three-layered feed-forward network to associate a

moving window of seven characters with the correct phoneme. The second

and third layer in this network has modifiable weights on the connections

between the layers. Every computing element in the first layer (input layer ) sencls

Its output to every computing element in the second layer. Every computing

element In second layer sends its output to every computing element in third

layer (Output layer ). Since the second layer is not accessible from outside, it is

called the hidden layer.

Input to the Input layer is from a character window where center

character Is mapped to the corresponding phonemic output In the output layer.

Initially an input is applied to the first layer and after the network settles to a

particular output It Is compared wIth a corresponding correct training instance of

the output. If there Is any error it Is back-propagated to adjust the weights of

neurons using the back propagation of error rule (or the generalized delta rule )

developed by Rumelhart, Hlnton, and Williams (1986).

NETtalkdemonstrates thatitIspossiblefora network to be trainedto form

internalrepresentations of the interrelatlonshlpsin a trainingset.There have

been some other studieswhich report good generalizations( e.g. PARSNIP,

Hanson and Kegl, 1987).



NETtalkleadsto a hostof questionsconcemlng the network architecture

most suitedto problems of thisnature,the most appropriate strategies to be

used for training such networks, and whether the performance of these

distributedprocesslng models compares favorably with sophisticatedsystems

likeMITalk(Allenf.1985).A questlonof particularInterestconcerns whether itis

possibleto devise a system based on distributedrepresentationsthat willbe

able both to form abstractionsanclto translatethislearned relationshipto other

testdata (i.e.,to give good generallzatlon).

g
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Sparse Distributed Memory

THREE

Sparse Distributed Memory (SDM) Is a distributed model of memory

proposed by Kanerva (1984). It is capable of handling enormously large address

spaces and is capable of associative recall in the presence of noise.

The realization of the memory Is attained through an actualization of a

small subset of the address space. This subset is a random sample of the

address space. The strategy for storing a pattern consists of storing it in a

distributed manner. In the simplest case, the input pattern is stored at all the

locations whose addresses are sufficiently similar to the input pattern. Hamming

distance is used as a metric of similarity.

Reading from the memory consists of pooling the information contents

from addresses most similar to a specified read address and taking a majority

decision for each of the features of the pooled information to arrive at the output

pattern.

3.1 HOW SDM Works

SDM can be viewed as a black box, with two inputs and an output. One

of the inputs is an address pattern and the other input is the pattern to be stored.

That is, the memory operates by storing a pattern a t an address. In the read

mode, given an address pattern the memory retrieves a related data pattern.
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The internalstructureof thisblack box isjustthat of a random access

memory (RAM). Itpossessesa setof addresses and associated storage bins at

these addresses. Itisdifferentfrom RAM Inthatnot allpossible addresses of a

contiguous address space are present. Only a small subset of the address

space Ispresent. Storage ina conventional RAM consistsof bffregisters,InSDM

itIsinsteada setofcounters (one counter corresponds witheach bit in a data

registerof a RAM). There Isalso a slmlladtyIndicator. The memory works by

storinga pattern at similaraddresses. Hamming distance isused as a measure

of similarity.

Figure I shows the addresses forstorage locationson the leftand the

actual assoclated storage binson the right.

SDM operationscan be statedInterms ofthree pdmltives.

I.

2.

3.

Selecting locations similar to pattern X.

Storing pattern Y at Pattern X.

Retrieving a pattern given a probe X.

3. I. I Selecting locations similar to pattem X

We start with some similarity criterion. Let us first consider the concept of

Hamming distance. We say that patterns x I and y I are a distance d apart if

they differ in d positions. Thus, the smaller the number of positions in which two

patterns differ, the more similar they are. In this example given in Figure 2 the

Address X is 011101. All addresses which do not differ in more than r positions

from address X are considered to be similar to address X. These are shown

shaded. Each of these are at distances indicated in the distance column from
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address X. For example, the first address 010011 differs from address X in the

third fourth and fifth positions. So the total number of positions in which it differs

from address X is 3. If the distance between the location's address and the

address X is less than or equal to the radius then the address is selected. This is

shown by a 1 in the select column for the selected addresses and a 0 for those

which have not been selected. All the selected addresses are shown In gray.

The parameter r Is called the select radius. (It indicates, in fact, the maximum

allowable dissimilarity In selecting the addresses). In the example shown, the

select radius r has a value of 2. Thus the first address has not been selected.

Display 1 gives a formal statement of the select operation.

3.1.2 Storing a pattern

When storing a pattern Y at an address X we first select locations given

X. To store Y at these selected locations we proceed as follows, If a bit in Y is

one, we increment the counters for all the selected addresses. If a bit is [3, we

decrement the counters at those addresses. This Is done for all bits in Y.

In the example shown in Figure 3, pattern 001110 is to be stored at 011101.

First we select locations that have addresses similar to 011100 [that differ from

[311100 in no more than 2 positions, as the radius r has o value 2). These are the

the locations marked In gray.-_

In this example, the fin bit in the pattern to be stored, i.e. 0011 i0 is[3.So, for

all the selected locations the counter in the first position is decremented. The

second bit also happens to be O, so counters in the second position for all the

selected locations are decremented. The third bit is I so counters in the third
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position for the selected locations are Incremented. Following this method all

counters of the selected locations are updated. Figure 3 shows the situation after

updating all the counters in the selected locations. Display 2 shows a formal

statement of the write operation.

3.1.3 Retrieving a pattern

Given a probe pattern X we wish to retrieve an associated pattern. We

first select the addresses that are similar to X. Figure 4 shows selected locations

in gray. For each position in the selected locations, we pool the contents. This is

the pooled sum shown in Figure 4 at the bottom right.

For each of these positions we now threshold the sum. If the sum is above

the threshold, we output a I in the corresponding position otherwise we output a

zero. Display 3, shows a formal statement of the retrieve operation.

3.2 SDM Modes of Operation

In its simplest mode of operation, SDM works as a pattem recognizer. In

each write operation SDM modifies the abstraction of the stored pat"l'em. With

SDM the problem of leamlng tasks is transformed to storing and retrieving

encoded tasks.

3.2.1 Auto-associative Mode

In an auto-associative mode o pattern X Is stored at address X. This

gives SDM an ability to use Iterative reads to enhance fault-tolerance. That is,

given X I we retrieve YI. Then reading at address Y I we retrieve Y 2. Continuing
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in this fashion we find that under certain conditions we will converge at the

correct stored pattern. That is X 1 is stored at X 1, then under conditions of low

noise and with relatively few patterns in memory, we will be able to retrieve X 1

by reading at X 2, which may be slightly different from X 1. If the probe is

sufficiently near the stored paffem, the reading procedure is guaranteed to

converge Ifthe number and nature of storedpatternsIssuch thatthe signal-to-

noiseratioremainswithinacceptable limits.Ifthe probe patternisfartherout,the

reading procedure Isnot guaranteed to converge. Thlsproperty of SDM can be

used fortasksof patterncompletion orsimplefault-tolerantapplications.

SDM works wellInthIsfashionwhen the number of storedpatternsisless

than about 10% ofthe number oflocations(Kanerva,Cohn, and Keeler,1986).It

Isnecessary to have the addresses distributedrandomly throughout the address

space inorderto get good predictableperformance.

3.2.2 Sequential Mode

SDM can be used in another mode to store sequences. To store a

sequence 'XI, X2, )(3, X4 ..... X n', store X2 at address XI , store X3 at address

X 2, store X 4 at address X 3, and so on. The sequence can be retrieved by

using a probe pattern X.

Retrieving sequences with this scheme may run into problems when two

sequences have an identical beginning. To counter problems of this nature,

Kanerva proposes a modification of SDM incorporating the use of "folds" (see

Kanerva, 1984). Sequential mode and operation of folds are not relevant to the

study described in this report.
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Address pattern
Pattern

to be stored

I I

location

addresses

similarity
indicator

location contents
Retrieved pattern

Figure I - Internal Structure of the Memory.
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Address pattern Pattern to be stored
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Figure 2 - Selecting Locations. Locations which do not differ in more than

two places from the address pattern are selected. They are shown in gray tone.
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Display I- Selecting Locations.

Let

M be the set of actual memory locations,

T be the reference address,

n be the number of bits in the address,

r be the select radius,

d(x, y) be the distance between x and y:

n

d(x,Y)= Z Ixi- yil.
i=1

Then

S(T), the set of selected locations, is given by

S(T)={ L I L_ M ^ d(L,T)_<r}.
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Address pattern

Io _ 11 [" o 11.

_ Y ? Y v ? __
0 1 0 0 1' 1

=

1 0 0 1 1 1
0 : 1: 0 1 0 11

1_1i 1 o 1 0
=

1 0 1 0 0 0

1 1 1 0 1 I1

110 11 0 0
1 I il !..!1_

[0 I0 '"

Y Y Y

Pattern to be stored

1 i 1

V V
=

+61,2
+511

+2 +410
+5 +3ll
0 +2J2
'0 +212

+1 +3i3
+6 +4 lO

=

• • o

+4 +21-2

+3 +5 I 5 -" '

, I,T'l
V V w

i i i .

1 ,

0 i-4+4
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]"F -2 i-2
T_- --31-3
T'_ -2l-4
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I
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ii

[
V V v

F

I
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4-

-4
I

-21

Retrieved pattern

Figure 3 - Storing a Paffem. Locations similar to the address pattern are

selected. These are shown tn gray. The counters at the selected locations are

componentwise incremented or decremented if the respective components of

the patternto be storedare IorO.
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Display 2 - Writing to SDM.

Autoassoclative mode

Let

Tj be the jth bit of the target pattern T,

Cij be the jth counter of memory location Li.

Then writing the pattern T implies that

VLi e S(T)

Cij := Cij +

Cij := Cij -

1 ifTj = 1

1 if T j= 0

(j= 1,.., n).



20

Address pattern

!o 11 1 l j
I I
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o oli[F
1 1 I =_1

I

o _o LL
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selected counters
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(threshold = 0)
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'2 l-2 +2
-3 i-3 +5
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_.2 14 1210 21-E
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. | i | i i

v Ol 0 1 "1110

Retrieved pattern

Figure 4 - Retrieving o Pattern. First,select locations similarto the target

address. These are shown in gray tone, Then pool the counters at the selected

locations and threshold these pooled sums to retrieve the pattern. In the

example above as well as in display 3. the value of the threshold is zero.



21

Display 3 - Reading from SDM.

Let

T be the probe pattern,

S(T) be the set of locations selected with probe T,

N(T) be the number of locations selected with probe T.

Then reading with probe T implies that

VL i _ S('T')

N(T)

Sum j = __, C ij
i=1

j=l,..,n

Output j = 1

Outputj = 0

if Sum j >

otherwise.

el
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Learnlng to Read Aloud

FOUR

4.1 Introduction

In this chapter, we describe the simulations performed In an attempt to

solve the text-to-phoneme mapping problem using SDM as the network model.

In what follows SDM is treated as a multi-layer network. A modification of the

generalized delta rule isused to train SDM to perform the desired mapping.

Work described In this report is empirical In nature. The main resuffs

obtained in these experiments inClude:

I.

,

A demonstration thatan error-correctinglterativetralnlngscheme

can teach SDM the desired mapping. Thlsdemonstration is

based upon slmulatlon results.The learning algorithm is

described In detallIn the laterparts of thissection.While the

resultsare empiricalInnature the learningalgorithm isbased on

the delta rule.The delta ruleIsmodified to account for the

differences between SDM and the multi-layermodel used in

NETtoIk.

A scheme to handle correlated data sets. Simulation results

show that the scheme gives good results. We believe that this

scheme can provide distributed representation of the mapping

rules as a function of similarity.
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A demonstration that the performance can be further Improved

by using a two-stage model. This is shown through simulation

results.

4.2 Details of the learning mechanlsrn

4.2.1 Thresholds

SDM is similar to many matrix models. In simple matrix models of

associative memory, one can recall the stored vectors accurately if they are

orthogonal. Under some other conditions the vectors can still be retrieved if they

are not orthogonal as long as they are linearly independent. For correlated

vectors, retrieval is still possible by adjusting the thresholds (Stone, 1986).

As more ancl more patterns are stored in SDM0 the effective radius from

which a pa_em can be reh_eved decreases. This occurs as the system starts

moving from a low noise state to a state with high level of noise. (Here, noise

refers to the interference in a a stored signal from one pattern due to storage of

other vectors). One approach to solving this problem is to estimate the noise

and adjust the thresholds accordingly. If the input and target output patterns are

randomly chosen, the noise is distributed with mean zero. When the input and

output patterns are not random, the associations can be retrieved better by

adjusting the bias to that of the mean of the counters (see display 4). This simple

scheme is equivalent to having a dummy location which is always selected

during storing and retrieval and its weight is adjusted by the number of other

counters that are selected in the select operation. Thls is analogous to the

dummy unit that is always on as used in NETtalk .
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Thisstilldoes not correct for the fact that input addresses are not

randomly chosen. A scheme to take account of correlatedaddress patternsis

discussed later.

Another way to estlmate the correctthresholdsIsto pose itas a multi-

dlmenslonal search problem with retrievalas the objective function to be

maximized. Itcan then be solved by methods such as simulated annealing or

stochastic iteratlvegenetic hillcllmbing(Ackley, 1987).For a discussionof

varioussearch methods ina multidimensionalspace and theirrelativemerits,

see Ackley (1987).

4.2.2 Leamlng Mechanism

The leamlng mechanism consists of exposing the pattern associator with

a pattern to be associated and minimizing the error between the actual output

pattern and the desired output pattern. This is accomplished by feeding back a

small poffion of the error, in an error-correcting manner, to the counters that have

taken part in producing the error. This corresponds to a gradient-descent search

on the error surface such that traversal on the error surface Is in the direction of

lower error. Many training procedures in artificial neural systems take this

approach ( Rumelhart and McClelland, 1986).

4.2.3 Nonlinear Activation Function

At first, a scheme similar to a simple "perceptron learning procedure"

(Rosenblatt, 1961), was used to adjust the counters. This learning was found to
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be unstablebecause ofthe dlscontlnuityat the threshold.One way to overcome

thisproblem Isto use a slgmoldal transferfunction that makes Itpossibleto

obtain a desiredchange Inoutput by choaslng the proper Input.The important

characteristlcof a slgmoid functionIsthat Itisa dlfferentlable,nondecreasing

functionof itsinputand itapproxlmates the thresholdlogicunit(a thresholdlogic

unitisan inflnite-galnsigmoid).

The use of a slgmoid can be furthersupported by the fact that it can

model the Inputoutput characteristicsof biologicalneurons to a certainextent.

Some characteristicsof a slgmoid functlon that appear to be similarto the

biologicalneurons are:

I°

2.

3.

Noise suppresslon.

Llmlteddynamic range.

Nonllnear,nondecreaslng response.

With the slgmoldaltransferfunctionthe activatloniscomputed as shown

In Display 5. The output Isthen computed as shown In Display6,The actual

feedback amount iscomputed by the leamlng ruleas shown Indisplay7.Thisis

justthe delta ruleas applied to Spa_e DistributedMemory. Inkeeplng withthe

basic characteristicof SDM. leamlng Isrestrictedto changes inthe counters.

The scheme of selectingsimilaraddresses to storesimilarentitiesIspreserved.

The feedback amount as shown Indisplay7 isthe quantity 8forthe output units

multipliedby the learningrate _.. Inthe generalizeddelta rule thiswould be

multipliedby the activationof unitsfrom the preceding layer.In our case the

activationof these unitsisIand hence the feedback amount does not show this
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multiplicand. Appendix A shows how Sparse DistributedMemory isa special

case of three-layernetworks.

4.3 Details of the Experiment

Carterette and Jones (1974)prepared a database of transcriptionsof

informalspeech forfour age groups. The youngest of these were firstgrade

children.Informalspeech drawn from firstgrade transcriptionswas chosen as

the data set.The trainingset consistedof 1028 words. The testset consistedof

915 words. The symbols inthe alphabet of the textsetwere the 26 lettersof

English.These were augmented withtwo symbols: fullstop and word boundary.

The symbols inthe alphabet ofthe phoneme setwere the 45 phonemes (only

those whlch occur Inthe trainingand testsets)augmented witha symbol forthe

sentence boundary, a symbol for the word boundary and a symbol for

unpronounced letters.Thus.the alphabet of the orthographic language had 28

symbols and the alphabet of the phonemic language had 48 symbols. The

problem to be solved Is to map a stringof symbols from one language

(orthographic language) to a symbol In another language (phonemic

language). The grammars of the two languages are closelyrelated.For an

interestingexample where the two languages differ,see R. B.Allen (1987).He

describesan experiment inwhich a mapping from Englishto Spanish istaught to

a network using a supervised learning procedure (i,el,the network learnsto

translateEnglishtextto corresponding Spanish text).

The orthographic stream was properly aligned with the phonemic

stream. Figure5 shows examples of segments of aligned orthographic and
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stream.
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Appendix B describes the symbols used in the phonemlc

In the simulations being discussed here the window consisted of 7

characters as in the NETtalk study. The 7-character window was coded by glving

different weights to different character positions The weights for the characters

in the window were - I, 2, 4, 8, 4, 2, I (Figure 6). These weights, which were

subjectively chosen, represent the relative importance of input characters in

determining the output. After weighting, the characters were coded with a

compact binary code (i.e. five bits were used to code each character).

Similarly, the phonemes were coded with a 10-bit Hamming representation of a

six-bit compact binary representation. (One-bit error detection ancl one-bit

correction code).

4.4 Training the Network

Let Tr = {<tl, p1>, <12, p2> ...... <in, pn>} be the set of pairs in the training

set, where < tl, pi> represents the ith pair of text window ti and the corresponding

phoneme pi. The network was tralned using set Tr as follows:

Step I: Store the training set by storing pl at tl, p2 at t2 ...... pn at tn.

Step 2: Compute thresholds using the equation shown in display 4.

Step 3: For each pair <ti, pl> in Tr,

Read at ti. Let the output be oi.

(Use Equations in display 5, and display 6 to compute the output).

Compute the error for all positions In the retrieved vector oi as

compared to the desired vector pi.
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(thisisthe componentwlse differencebetween each vector).

Compute the feedback amount.

(Usethe learningruleindisplay7).

Accumulate the feedback for each of the selected counter

separately.

Feedback the accumulated errorto allthe counters.

Repeat steps2 to4 untilnumber ofcorrectlyretrievedvectors

does not increase withfurthertraining.

Inthe actualtralnlngthatwas carriedout a vector plwas considered to

have been correctlyretrievedIfItmatched Inat least9 of the 10 positionswith

the output vector oi. Use of Hamming code incoding plallows an errorInany

one position.Thiscan be determlnisticallydetected and corrected.

Step I,Inthe procedure described above Isnot essentialIntrainingthe

network. One could as well proceed without it.However by includingthe first

step inthe trainingprocedure the percent correctlyretrievedstartat a higher

inItialvalue.

Figure 7 shows the schematic of the network in training.Initiallythe

trainlngset was stored inone pass. Then Ineach successivepass, response to

the vectorsinthe trainingsetwas noted.The leamlng rulewas then used to feed

back a smallportionofany noted error.



4.5 Simulation Results

We now describe the simulation results In the following sections. The next

section describes the results obtained with a network which was constructed with

randomly chosen hard locations (i.e., addresses). Later sections describe

Improvements aimed at obtaining better performance.
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4.5.1 Results wlth Randomly Chosen Locations

Figure 8 shows the performance of the training scheme used, when the

addresses of the locations are randomly chosen. The peak performance was

about 74% correct on the training set after 65 passes through the training set. The

training was still Increasing the percent correctly retrieved at the end of the

experiment, although the marginal gain was not enough to justify further training.

The memory contained 800 addresses In this simulation.

4.5.2 Countering the Problems of Correlated Data

Usually, real world data are highly correlated. If one uses SDM with

randomly generated addresses, Its performance deteriorates as the distribution

of data points is not random. One way to solve this problem is to select

addresses from the distribution of the problem domain. Keeler (1987) suggests

such an approach. He considers SDM from Kanerva's original formulation to

consider the case of correlated Input patterns. He shows that if the input set of

correlated patterns (i.e. the addresses) and the distribution of Hamming

distances between any two randomly chosen patterns from this set is known

g priori, then choosing the addresses from the distribution of input patterns, and
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usingthe proper radiusof similarity,$DM willshow the same abilityto retrievea

given associated vector as output,as Inthe orlglnalformulation. He suggests

that ifthisdlstributlonIsnot known, the above procedure can stillbe followed, if

the distributioncould be learned by some means. Rather than finding

techniques to learnthisdistrlbutloninsome way, we feelthat itwould be better

to draw the addresses from the data pointsthemselves. Keelers scheme was

introduced inthe originalKanerva formulationwhich did not use any iterative

supervised leamlng. We believe,however, that itcan be extended to include

the case where the memory Istralned usingthe supervised learning.We now

assume that the tralnlngset issufficientlyrepresentativeof the population of

input vectors In the problem domaln (See the discussion In chapter 6 of

learnable tasks and related trainingset size).Thus, we propose that the

addresses be drawn from the tralnlngset.

Figure 9 shows the performance as a functionoftralnlngwhen the hard

addresses are drawn from the tralningset.Inthisexample, 800 tralningvectors

were randomly chosen withoutreplacement from the trainingsetas addresses

of locatlons. In these slmulatlons,the peak performance was about 81%

correctafter300 passesthrough the tralnlngset.

Continuing our dlscussionfurther,letus now consider some interesting

improvement. Assume thatwe have M data points(i.e.,trainingvectors).Ifwe

chose a memory of M cells by drawlng these addresses from the M data

pointswithout repetition,we willhave a memory withaddresses identicalto the

data points,Ifthey are alldistinct,then with a zero radius-of-select,this

corresponds to the model of Baum, Moodyj and Wilczek (1986),where each
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address isa grandmother-cell representationof itself(Baum et al.callthisa

unary representation).Thus, we willget 100% yieldon the trainingset retrieval.

Thiscase isof littleinterest,sinceitIseClulvalentto memorizing the trainingset,

and the model willnot have any abilityto generalize.Also,there willbe no

damage reslstance.

Interestingbehavior can be observed as we startIncreasingthe radius-

of-write.As the radius-of-writestartsIncreaslng,the signal-to-nolseratiowillbegin

to decrease. Fora smallradiusthe retrievalon the trainingsetwould stillbe fairly

high, and the system'sdamage resistancewillstartIncreasing. The system's

abilityto generallzewillalso startIncreaslng.

A more IntrlgulngposslblllfyInvolves findinga functlonal relationship

between the addresses and the data. Thismay be betterthan the connectionlst

approach of analyzingthe weights on the hidden unitsIno 3-1dyerfeed-forward

model. Since a given address from the tralnlngset willcorrespond to a hard

address In the memory, statisticalanalysls of counters In the immediate

neighborhood may reveala functionalrelationshipbetween the addresses and

the data. More specifically,since address A Inthe trainingset corresponds to

address A of a hard location,one can justtake addresses inthe trainingsetthat

are slmllarto thisancl perform statlstlcalanalyslson theirrespective data

counters,thereby obtaining a more conclse representationof letter-to-sound

rules.This method can provide these distributedletter-to-soundrulesas a

function of similarity.This,we believe,isthe main advantage of the scheme

Generalization can be improved furtherby choosing a majorityof addresses

from the trainingset and augmenting them with many addresses from possible
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testsets(i.e.,randomly chosen character windows selected from differenttext

passages). Thiswould show higher generalizationas long as the radiusisnon

zero.

Figure10 shows the performance ofthe networkswhen hard locationsare

chosen corresponding to each trainingvectorand these are furtheraugmented

as prevlouslysuggested with vectorsfrom possibletestsets.

The performance on the testset Ismuch higherin figure10 (i.e.the case

where the addresses of hard locatlons correspond to the trainingset and these

are further augmented with addresses from randomly drawn character

windows). Peak performance infigure9 on the testsetisabout 65% whereas the

peak performance on the testsetinfigure10 isabout 71%.

4.5.3 Improving the Performance Uslng a Two-stage Model

It is possible to improve the performance further by uslng the following

scheme. Let Tr = {<tl, p1>, <12, p2> ...... <in, pn>} be the set of pairs in the

trainingset,where < tl,pl> representsthe ithpair oftext window t!and the

corresponding phoneme pl. First,tralnSDM to itsbest possible mapplng

capabilityAs described in the section- Trainingthe Network'. Let the best

output of the memory be {fl,f2......fn}Now create a new memory and trainit

withthe trainlngset,Tr2 ..{<fl,p1>, <f2,p2> ......<fin,pn>}.

Thus,the output of the firststage Isused as inputto the second stage,

such thatthe desiredoutput (target)Isstoredat the output of the firststage.This

second stage isthen trainedwithrespecttotargetoutput inthe same way as the

firststage.Thisleadsto a dramatic improvement inperformance.



Figure 11 shows results of simulations when fi_t stage SDM was trained as

previously shown In figure 9 (I.e.. The addresses of locations were drawn from

the training set). The peak performance now reached about 87% as opposed

to 81% obtained using only one stage.

Figure ]2 shows the Improvement In performance when the first stage

hard locations correspond to the traintng set (Not just a small sample of the

training set). The peak performance improved from about 89% to 93% In 120

further passes through the training set. The gain may seem insignificant but this is

because the first stage performance was cluffe high. The retrieval starts at a

lower value than the maximum for the first stage; but this very rapidly rises to

above the highest in the firststage.

At present, we cannot offer a clear explanation of why this scheme

shows an Improvement in performance over a single-stage model. We can

only speculate about it.

The basic learning scheme that Is chosen in a single-stage model is

based on SDM's similarity based storage and retrieval mechanism. Hamming

distance is used as the metric of similarity. For some problems this criterion is

clearly inadequate. Consider the 'parity problem ' or the 'clumps problem '. The

learning mechanism as described in the single-stage model Is incapable of

solving problems of this kind. In the first problem above, we are interested in

learning to find the 'parffy' of binary vectors. In the second problem we are

Interested in detecting the number of clumps of "l's In a binary vector.

We tested our single-stage learning mechanism on the clumps problem

and the parity problem (which is just the generalized XOR problem). As

33



expected, learnlng mechanism was unable to solve the clumps problem.

TrainlngImproved performance over the trainingset however the performance

on testsetwas hopeless (about same as random guessing).Thus.trainingcould

only help SDM memorize the trainlngset but itwas unable to generalize.The

performance on the parityproblem was very good bur that isbecause of the

Clulrkof the select mechanism. SDM seFec_ mechanism issuch that SDM

behaves as though Itisharclwired to solvethisproblem. Appendix C explains

thisbehavior.

The Improved performance ina two-stage model may be explained as

follows.The performance inthe firststage can be thought of as the maximum

obtainable performance from the firstorder statistics.Afterthe firststage has

separated the outputs invariouscategories,the second stage can be thought

of as utilizingthisknowledge In furtherseparating the outputs. Multi-layer

networks with more layersof hidden units are able to learn higher order

predlcates . NETtalk experiment showed that with zero hidden unitsthe

performance was poorest as itcorresponded to leamlng from firstorder

statistics.$DM isa special case of multi-layerfeed-forward networks (see

Appendix A). With stacking of SDM stages thlsbecomes a network with two

layersof hidden units.Itmust, however, be pointed out that the trainingintwo

stages does not proceed simultaneously. The firststage has been trained

completely before the creation ofthe second stage.

Ina sense, the sec0ridStage can be thought ofas an interp-reterof what

the firststage has found. However, itisnot limitedto being an interpreter

otherwisea simpletable lookup would sufficeas on interpreter.Itisan adaptive

34



interpreterwhere the learningisstoredIna distributedfashion.

shows the robustnessof a distributedrepresentation,

35

ConseQuently, it
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my_cou s ins_I_get_t o_play_so ft_bal 1

mA-k^- zInz-A-gE--t ^-ple--scf--bc--

have to wake_up_put_him_back in my

h@ f--t ^-wek-- ^p-p^ .... M-b@k-- Im-mA

Two segments from the training set.

lived where I used to live I had t

1 ^v-d-w-Er--A-Ys---t ^-i Iv--A-h@ d-d

you_go_swimming_t her e_and_eve ryt hi

y^--go-swim- In--D-Er---Nn-Ev-r IT- I

Two segments from the test set.

Figure 5 - Aligned Orthographic and Phonemic Streams.
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Weight

1 2 3 4 5 6 7

Character position

Coding orthographic stream

Figure 6 - Coding Orthographic Stream. Central character in the window

isthe character being mapped inthe context of other sixcharacters.Itisgiven

the highestweight withthe weights reducing as you go away from the center.

Each character isthen coded usinga five-bitcode.
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stream

stream

Figure 7 - A Snapshot of Training. Phoneme/c/is the target phoneme for

the character window: *y_soft_'. Character "o" in the context of "y_s"and

• if_" is mapped to target phoneme /c/.



39

Display 4 - Computation of Thresholds.

Let,

m = The number of locations in the memory.

na = The number of bits in the address.

n d =

0i =

The number of bits in the data.

Bias for computing ith bit of activation.

i=1,.., n d

Then,

Counteri iei = Ill
j=l
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Dlsplay 5 - Computation of Activation.

Let,

T be the reference address,

S(T), be the set of selected locations,

N(T), be the number of locations selected,

C., be the mean counter value,
I

over the selected locations.

ioeo,

_L_, Counter.
I

C.= scr)
i N(T)

Then the ith component of the activation vector, a.,
I

is given by

a

i

1 + e -( C I - e.)I
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Display 6 - Computation of Output.

Let

a. = jth component of the activation vector.
J

Then

Output. = 1 if a. > 0.5,
J J

0 otherwise.



Dlsplay 7 - Learnlng Rule. The leamlng rule is same as the generalized

delta rule for the output units. As the output of the selected locations is I, it is not

shown exDllcitly. Output of units not selected is zero so they do not take part In

learning. Thus, only the counters of selected units are adaptively changed.

Let

t be the target vector,

a be the activation vector,

e be the error in the output

Then the componentwise error

is given by

in the activation vector

e.=t.-a.
J J J

The learning rule reduces this error by feeding back

a small fraction of this error to the counters that

contribute to producing this error.

Let Z be the coefficient of learning (0 < _. < 1)

Then the error reducing signal for the jth bit, b.,
J

is given by

b. = -x.a.( 1 - ao ) e.
J J J J

42
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Performance as a function of training

when the hard addresses are chosen randomly.

80

set

40'

30
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Number of training cycles

Figure 8 Network Performance With Randomly Chosen

Addresses. The memory contained 800 hard locations. Addresses of these

hard locations were chosen randomly.
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Performance as a

when the hard addresses

of the training

90'

0
0

60'
0

&

50'

40'

function of training
are from the distribution

set.

test set

30 0 ' , •
100 200 300 400

number of training cycles

Figure 9 - Network Performance When Addresses Are Chosen

From the Training Set. In these simulations the addresses of hard locations

were chosen from the training set without repetition. The memory contained 800

hard locations.
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Performance as a function of training

when the hard addresses correspond to the training set.

9O

8O

¢ 70

0

0

training set

test set

100 200

number of training cycles

Figure 10 - Network Performance When Addresses Correspond to

the Training Set. In these simulations the memory contained a harcl location

corresponding to each unique vector in the training set. These were further

augmented with randomly generated character windows as explained in the

text.
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Two-stage Training for Performance Enhancement.

Performance as a function of training (second stage)

when first stage hard locations are drawn from

the training set.

90

80

0

@
¢,1

70

training set

test set

60
i ! i i " •

0 100 200 300 400 500 600

number of cycles

Figure 11 - Two- stage Training. Figure shows the performance of the

second stage as a function of training. Peak output of the network (shown in

figure 9) was used to form a new training set as explained in section 4.5.3.
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P_.
o

P

Performance as a function of training

100'

90'

80

70
i

training set

test set

60
0 50 100 150

number of training cycles

(second stage).

Figure 12 - Two-stage Training With Full Trainlng Set. Figure shows the

second-stage performance of the network. Inthese simulations,the training set

was formed by taking the peak output ofthe network from figure 10.
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Design Decisions

FIVE

5.1 Introduction

In this section we describe various design decisions and contrast these

with the ones made in NETtalk in particular and some other systems in general.

Differences In NETtalk and the simulations performed using SDM include:

I*

2

3

4

5

Network architecture.

Leamlng mechanism.

Co<ling.

Preprocessing ancl post processing.

Measuring the performance

5.1,1 Network Architecture

The architecture of SDM is in many respects different from the multi-layer

network used in the NETtalk study. (For a complete mapping from SDM to the the

network used in NETtalk study see Appendix A). Major differences include:

I. In SDM connections between the first and the second layer are

fixed but are modifiable between the second and the third layer.

NETtalk used a network where all the connections between the

units were modifiable.



. In the modified SDM used in the present study only the output units

have real valued activations. All the computing units in NETtalk

had real valued activation.
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5.1.2 Learning Mechanism

The leamlng mechanism that was used in the present study differs from

the one used in NETtalk in many respects.

I. In the present study, the learning takes place only between the

second and the third layer, while in NETtalk all the connections are

plastic. There are some other studies (see for example, Huang

and Lippmann, 1987) which report experiments in multi-layer

networks wffh a few fixed sets of connections and remaining

modifiable connections.

2. An a-pflod choice Is macle in choosing the connections in the first

layer. When these correspond to the distribution of the training set

the performance of the network improves. When these

correspond to the examples In the training set the performance

improves further. It can then, also provide a distributed

representation of mapping rules. NETtalk has no mechanism to

arbitrarily fix some connections. In NETtalk the network learns

these connections over many training cycles.

3. NETtolk was restricted to using extremely small leamlng rates and

using momentum terms In the learning rule in order to have a

stable learning curve. It follows from the scheme of exposing
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one patternat a time anclthen making a change inthe strengths

ofthe connections.The presentstudy does thistraininginparallel.

(l.e.,changes inthe connection strengthsare made only aftera

complete pass through the trainingset).Hinton callsthis'batch'

mocle of tralnlng.This requiresa global memory to store the

changes required untila pass iscompleted through the training

set. Thus,thisfailsas a neural model of learning.

Inthe present study,a two-stage model Isshown to improve the

performance of the network. NErtalk scheme dld not have a

similarsetup.

5.1.3 Coding

In the present study, In coding the input a weighted input scheme was

chosen (see Figure 6). The weights were arbitrarily chosen. They were meant to

reflect the fact that the Importance of each character In conveying the

information required, for finding the correct mapping, decreases as the distance

of the character Increases, from the center of the window of characters. This is

reflected in the work of Lucassen and Mercer (1984). NETtalk did not use such a

weighted input scheme. All positions in the input stream were considered to

have the same influence in determining the output.

In the present study, the characters were first coded with a compact

binary code using 5-blts to code each symbol in the orthographic stream.

Similarly, in coding the output, a compact binary cocle was used. Each symbol
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inthe phonemic stream was initiallycoded witha 6-bitcode. These were later

processed through an error-correctingscheme.

On the otherhand, NETtalkused articulatoryfeatures to code the output

units.Inthisscheme, unitsare eitheron or off,indicatingpresence or absence of

a particular feature. One unit Isused for complete information about a

particularfeature.Forcoding the input NETtalkused localrepresentation.Inthis

scheme one out of29 units(26lettersand 3 punctuationmarks) isswitched on to

indicate the particularInput character. In the distributedrepresentation the

information is coded uslng many units. Ifeach unit partlclpates In the

representatlonof many entities,itIssaidto be coarsely tuned (Rosenfeld and

Touret-zky,1987) and the pattern Iscalled coarse-coded pattern. Thus, any

particularunit cannot give complete Information about the presence or

alosence of any feature.

Inthe partlcularscheme thathas been adopted inthe presentwork (vl_,

usinga compact binaryrepresentatlon),unitsthat may be on do not bear any

particularresemblance to the meanlng of the patternsthey encode. Thus,they

are patterns for the symbols they encode and the scheme isslmllarto what

Rosenfeld and Touretzky refer to as coarse-coded symbol memories. For a

stucly of the coarse-coded symbol memories, their strengths ancl weaknesses.

see Rosenfelcl and Touretzky (1987).

The coding method employed makes the coding more general and

hence brings it closer to a situation in which an expertise In the domain is not

necessary. This is not to say that there is no role for the expert. The role of the

expert is limited to making sure that the set of examples is internally consistent



anclthatthe errorsInthe examples are mlnlmized.By trylngto reduce the roleof

expert as much as possible,the system has been taken more and more inthe

general directionsuch that itshould be possibleto transferthe whole learning

apparatus to a problem ina differentdomain with little,ifany, change. For an

example of completely random coding, where randomly chosen vectorsacts

as symbols forthe entitlesthey encode, see Elman (1988).Inthe presentstudy,

the coding Isas good as random with the sizedetermined by the number of

symbols inthe phonemic language.
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5.1.4 Preprocesslng and Postprocesslng

In the present study the output was preprocessed and postprocessed

using Hamming error-correction coding. NETtalk clid not use any such scheme.

The phonemes were initially coded using six-bit code. These were further

recoded to ten-bit Hamming representation of these six-bit codes. Hamming

codes are one of many different codes that have evolved out of a need for

reliable information transmission. Different coding techniques use built-in

redundancies to detect and In some cases, as in the present case,

determln_ically correct an allowable error in transmission. Redundancies in the

code-words have been used extensively in distributed representations,

however, coding theory uses redundancles in a systematic way.

With a compact six bit code it is impossible to detect (let alone correct)

an error in the output as the legal code-words are separated by a Hamming

distance of I. If the code-words are n-bit long, Hamming transformation

separates the code-words by adding k "parity" bits such that the code-words



are separated by a Hammlng distance of 3.Thisallowsforthe detectlon ancl

correctionof any one-biterrorinretrieval.For an excellentintroductionto ideas

behind error-correctingcodes, Informationtheory and cyloemetics,see Jagjit

Slngh (1966).

At lower stages of yield,separating the legalcode-words as described

aDove, improves the performance. The gain drops as trainingreduces errorin

retrieval.Even at the peak retrievalthisscheme Improves the retrieval.

ThisresultIsreallynot surprlslngas separating the code-words willalways

resultIna hlgheryield.
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5.1.5 Measuring the Performance

In the present study the performance was measured in the following way.

If the output of at least nine bits matched the desired output then the vector was

scored as having been correctly retrieved. For any particular bit the output was

considered to be I If it was greater than 0.5 and 0 if leas than 0.5 as shown In the

output rule. A stricter criterion would be to consider output as I if it was greater

than 0.9 as clone in the NETtalk study and 0 if less than 0. I. This stricter criterion

was used in some experiments and the results followed those with the not so

strict criterion but required many more training cycles.

NETtalk scheme judged performance according to a perfect-match

and a best-guess criterion. The output is I if the activation value Is greater than

or equal to 0.9 and 0 if it is less than or equal to 0. I. If the activation value was

between 0. I and 0.9 then for the purpose of finding perfect match the output was

considered to be undefined ( i.e., it required further training to find if it would
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stabilizeto the proper extreme values). Ifallthe bitsof an output vector

matched the desired output, itwas scored as a perfect match. Best-guess

criterionclassifiedthe output vector by mapping itto the nearest legal cocle

making the smallestangle withthe output vector.

Thisprocedure issomewhat similarto the icleaof error-correctingcodes.

However, Itcan give misleading results.(Hamming errorcorrection scheme

separates the legal cocle so that any one-bit errorcan be cleterministically

detected and corrected by pushing the output vector to the nearest correct

legalcode). Dahl (1987)shows thatthe icleaofusingthe nearest-match criterion

In measuring the networks performance can give misleading results.While the

approach may Intultlvelyappear to be slmllarto mlnlmal error, a classof

examples has been found forwhich Itisnot the case. Inparticular,the nearest-

match criterlonissatisfiedbut the errorIsnot minimized.
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Discussion

STX

6.1 Introduction

In this section we discuss the simulations performed with SDM as the

network model and in the later part we discuss some issues which are common

to different connectionist models.

6.2 General Discussion

What follows is a general discussion of the simulations performed. This

discussion is limited to the present study without a particular reference to NETtalk

in every instance, since in many cases the discussion is not applicable to

NETtalk and in other cases there is no information available regarding some of

these points from NETtalk study.

6.2.1 Some Comments About the Leamlng Mechanism

The following points need to be noted about the leamlng mechanism.

I.

2.

3.

The Input ancl output vectors are In a discrete space,

The leamlng error correction scheme is in a continuous space.

The output plots show number of vectors correctly (with error

correcting codes) retrieved.



,

56

The criterion could have been number of bits correctly retrieved

but the error-correcting code corrects errors in vectors whereas

the learning error correction scheme corrects errors in bits.

6.2.2 Character-Window Sizes

From the studies performed by Lucassen and Mercer (1984) ff appears

that a seven-character window may be appropriate though a smaller five-

character window may be a good approximation. An et al. (1988) take a

different approach and experiment with windows of different sizes to arrive at the

proper text-to-phoneme mapping.

6.2.3 Damage to Counters and Its Effect on Retrieval

Distributed representations manifest a remarkable tolerance to failure of

individual elements. Performance is not affected to the same degree as the

damage if the damage is not extensive. To test this, some damage to the

counters was introduced artificially. A certain percentage of counters were

randomly chosen and set to zero. Figure 13 shows the performance of memory

as a function of the percentage of damage. Figure 14 shows behavior of

second stage in the presence of damage to the counters. In these simulations

the peak trained setups were taken from figures 8 and 10 respectively.

6.2.4 Relearnlng After Damage to Counters

A network was taught using the learning scheme discussed earlier. It was

exposed to some damage and again trained. This was expected to show
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performance similarto simulatedannealing (Kirkpatrlcket al.,1983).The network

regained itspeak performance aftertralnlng.NETtalkstudy reported a similar

finding.

6.2.5 Inconsistencies in the data sets

The data used in the present study contained a few Inconsistencies. This

affected the peak performance and the number of training cycles required to

attain the peak performance. Details of inconsistencies in the data in the case

of NETtalk study were unavailable.

6.3 Limitations of the present study

The present study Is limited by many of the assumptions and

simplifications. It is an oversimplification to assume that a given size of window

of the orthographic stream has enough informatlon to find the appropriate

phonemic output. The present study also Ignores the effect of co-articulation.

No attempt has been made to account for syntax or semantics. For this

problem, Hamming distance may be an inappropriate metric of similarity.

6.4 Related Issues

In what follows, we extend the discussion of issues that are common to

different connectionist models. These include:

I Scaling of the learning algorithms with respect to different

parameters.

2 Generalization.



Behavioral ancl neural plausibility.
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6.4.1 Scaling

Most of the present day learning algorithms used in the connectionist

models do not scale well with size of the problem. Thus, while they may show

some dramatic results on toy problems, they are far from a stage when they can

be used in useful practical applications.

Fogelman et al. (1987) investigate the back-propagation algorithm to

study memorization and generalization on two tasks to study the scaling

behavior of the network with the ratio of tralnlng-set size to the total set size.

Tesauro (1987) describes the scaling behavior of a back-Dropagation

scheme in a three layer network. He investigates scaling behavior with respect

to the size of the training set, in the context of learning the "parity problem "with

32-bit vectors. In considering problems where generalization is possible, the

required number of presentations of each example should decrease as the size

of the training set increases. Thus, the total training time required should increase

at a less than linear rate. Sejnowskl and Rosenberg (1987) showed that NETtalk

leamlng scheme followed a power law ancl observed such sublinear scaling. In

the present study, the scaling behavior has not been tested yet.

If the task is learnable, the leamlng time would remain constant after a

given size of representative training set. For a learnable task, a way to reduce

the required training time, in terms of number of cycles of training, Is to use higher

order correlations (Psaitis et al., 1988).



Tesauro0 and Janssens

predicate order as the criterion.
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(1988a) describe the scallng relatlonshlpwith

6.4.2 Generalization

In a task of learning from examples, generalization may be loosely

defined as the ability to respond to a novel stimulus with a correct response, with

the help of the knowledge gained from a set of examples. This is inductive

leamlng. Clearly, from a given set of examples, it may not be possible to give a

unique correct response to a particular stimulus. Thus, it may be necessary to

specify some additional criterion of correctness. Pavel et al (1988) view this

additional criterion as posing some additional constraints. These constraints

may be by way of restrlcting the connectivity of the network, by a choice of

coding of Inputs and outputs, or by constraining the leamlng algorithm in some

way.

Let us consider some of the ways in which generalization can be aided.

Consider the "clumps problem'. Given a blnary string the problem is to

determine the number of clumps of "I' s that exist in the string. Fully connected

neural networks are not suited to solving this problem without a change in the

architecture. How does one, then, teach a network to solve this problem? A

possible solution involves interconnectlons limited to adjacent units (to reflect

the geometry of the problem).

Due to the pafflcular connectivity pattern, each one of the units in the

second layer can detect if its two inputs are the same or different, which is

essentially the solution to detecting the clumps of "I" s.
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Another approach would be to represent itproperly.Many studiesof

expertiseIn psychological lfferatureshow that experts perceive theirdomain

differently.They develop better representatlonof particularenvironments

(Smolensky,1986).Thus,a clearerunderstanding ofthe domain can be reflectecl

inthe prober codlng of inputsand outputsto solvethisproblem.

Another way of course Isto have a learning/storage algorithm that

accounts for higher order correlations.For schemes that incorporate higher

ordercorrelationssee Smolensky (1986),Baldi and Venkatesh (1987),and Psaltis

et al.(1988).Itmust however be pointed out herethat leamlng from higherorder

correlatlonsquicklyrunsintoa problem of combinatorlalexploslon.

6.4.3 Blologlcal and Behavioral Plausibility

If the parallel distributed processlng models are to serve as

computational models of neural systems they have to take into account

observed blologlcal and behavioral phenomenon.

The Iteraflve leamlng scheme InvoMng gradient descent in error space

does not have any known biological counterpart. A major weakness of this

work, however, Isthe fact that it involves a supervised learning scheme (in so for

as ff concerns fferative error-correction leamlng). Uvlng organisms do not have

a *teacher" in every walk of life, teaching every single association, by providing

an error vector after retrieval of every association.
l

A step closer to reality would be to provide a scalar measure of the error

as a teaching signal. A better way would be to have a learning scheme that is

behaviorally more justified by learning through the success or failure of o learned



assoclatlon.Thiswould be likethe reinforcement leamlng scheme of Williams

(1986)or the ARP (AssociativeReward Penalty ) leamlng scheme of Baffo and

Jordan (1987).

However givinga scalarerrorslgnalincreasesthe search space and thus

Increases the search time. For some simulation resultsdescribing these

problems associatedwffha scalarmeasure of errorsee Aispector et al.(1987).
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6.5 Future dlrec!lons

If connecflonist models are to serve as cognitive models they have to

step out of simplistic worlds of toy problems. This is one of the problems the field

of Artificial Intelligence has faced for a long time.

One of the highly unrealistic simplification which is often made in

connectlonist models is assuming that real world inputs are quantlzed. This Is

manifested in the use of fixed width vectors as inputs and outputs. Real world Is

not so nicely quantlzed. Inputs in real world vary both in time and space.

Another problem is that many of these models do not account for time

dependent phenomenon. Some new schemes solve this problem through the

use of innovative architectures (see Jordan, 1986) For some interesting studies

using Jordan's model of network, see (Elman, 1988), ( Allen R .B., 1988).
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Performance as a function of damage to counters

(First stage)
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Figure 13 - Damage Resistance (First Stage). Performance as a

function of damage in the first stage. The network that was trained as shown in

figure 8, was usecl as a starting network. 5%, I0%, and 15% counters were

randomly erased for these simulations.
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Performance as a function of damage to counters

(second stage)
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Figure 14 - Damage Resistance (Second Stage). Performance as a

function of damage in the second stage. The network that was trained as shown

in figure I0, was usecl as a staffing network. Random damage was introduced in

stages of 5% increment. The number of locations in the second stage were a

significant fraction of the total address space. This may partly explain the better

damage resistance in the second stage. In the first stage the number of

locations were an extremely small fraction of the total address space.
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SDM as a three-layer feed-forward network

APPENDIX A

SDM can be viewed as a three-layer feed-forward network. First we

describe a three-layer feed-forward network. Figure 15 shows a three-layer feed-

forward network, similar to the one used in the NETtalk study.

Input

output

direction

of flow of

information.

Figure 15- A three-layer feed-forward network.
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There are three layersof computing units.Unitsinthe fi_tlayertake one

inputand compute the identityfunction.Unitsinthe second and thirdlayertake

inputfrom allthe unitsof the prevlouslayer.They allhave realvalued outputs.

Also the weights on the connections between the unitsare realvalued. These

weights are all modifiable.

Input

C) C) C)

Modifiable weights. J

???
output

direction

of fiow of

information.

_V

Figure 16 - SDM as a three-layer network.

Figure 16 shows SDM as a 3-1ayer feed-forward network. In many

respects it is different from the network illustrated in figure 15. A major difference



isthat the connectionsbetweenthe firstand the second layer are fixed and the

connections between the second and the third layer are modifiable.

Consider the connections from the first to the second layer. Figure 17

shows these connections in greater detail. L1 is the first layer or the input layer.

There are n units in this layer which take input from outside plus one dummy unit

which does not take any input. Units in this layer have a fan-in of 1 input. If X is the

input and Y is the output of these units then Y = +1 if X = 1 and Y= -1 if X = O. The

dummy unit represents a unit which takes no input and always produces an

output = 1.
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0 | 0

n 2r_

i I i iiiii

L1

L2

Figure 17 - Fixed weights from the first to the second layer.



The dummy unitand the unitsInLI are connected to allthe unitsinL2,i.e.,

the second layer.There are m unitsInthe second layer.The connections from

LI to 1.2are binary,either+I or -I.These connections are randomly chosen.

These correspond to the addresses of the hard locations In figure I.The

connection from the dummy unitisan Integerwhlch representsthe threshold.By

keeping thisvalue fixedoutputsof differentunitsinL2 can be setto I,inresponse

to differentInputsto layerI.Thiswilloccur Ifthe connections to a unitinL2,from

allthe unitsInL1,are sufficientlysimilarto the Inputsto unitsinLI. By choosing the

strengthofthe connection from the dummy unitto be n-2r,we can selectany

unitin1.2(i.e.,forceitsoutputto be I)Ifthe weightson Itsconnections tothe units

InLI, do not differinmore than "r"placesfrom the output ofunitsInthe firstlayer.

ii ii

Q Q
direction

of flow of

information.

output
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Figure 18 - Modifiable weights.
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UnitsInthe second layerare thresholdlogicunits.Theiroutput is"I"ifthe

connections are sufficientlysimilarto OUtput of the firstlayer, otherwise the

output is "0".

Unitsinthe second layersend thelroutputto allthe unitsInthe thirdlayer.

The thirdlayerunitsare also thresholdlogicunits.The connections from the units

inthe second layertothose inthe thirdlayerare integers.

Rgure 18 shows the modlflableconnections between the second and the

thirdlayer.These correspond to the contents of the hard locationsinfigureI.

Connections clj,c2j....cmj representthe jthpositionof each of the counters.

Assume thatthereare n unitsinthe thirdlayer.Ifthe kth hard location(i.e.,the kth

unitinthe second layer)Isselected then allthe connections from itvlz.ckl,ok2,

..,ckn willtake part inproducing the outputs oi, o2 ....on respectively.On the

otherhand Ifthe kth harcllocatlonIsnot selectedthenthe outputofthe kthunitin

the second layerwillbe zero, hence the connections ckl,ok2 ....ckn willnot take

partinproducing the outputsoi,o2 ....on respectively.

In the simulations reported,

have been proposed to facilitate

These include:

I.

2.

a few changes to the aloove architecture

an Iteratlve supervised leaming scheme.

making the transferfunctionofthe thirdlayerunits,a sigmoid.

making the connections from the second to third layer real

valued.Thisallowssmallchanges Inthe valuesof connections so

that the network can be iteratively trained.
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Modlfylng the generalized delta rule for the SDM case. error is

propagated back from the third layer to the second layer only. (In the case of

NETtalk error is back-propagated all the way to the first layer). The leamlng rule

covers only the selected locations as only they have a nonzero output. Since

the output of the selected units is "I", it is not explicitly shown as a multiplicand in

the learning rule. bj, the amount to be fed back isthus the same as the 8 in the

generalized delta rule multiplied by the coefficient of learning _..

The computation of thresholds can again be explained as a dummy unit

In the second layer which is always selected and thus participates in producing

the outputs o I .... on.

In addition to showing this similarity between SDM and three-layer feed-

forward networks, and thus proposing a learning mechanism for SDM, the

present stucly shows that further Improvement in the performance is possible by

at least two mechanisms:

I. Choosing connections from the first to the second layers from the

_(l.e. from the set of examples). If they correspond to

the examples then they can provide distributed mapping rules.

2. Another improvement suggested isto stack up two stages of SDM

by first fixing connections through training In the first stage and

then tralnlngthe second stage.
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List of symbols used In the phonemlc stream.

APPENDIX B

7O

Following table describes the transcription symbols used in the phonemic

stream. First column lists the symbol, second column shows the symbol as it

appears in a word in the phonemic stream and the third column contains the

same word as It appears in the orthographic stream.

Consonants

p pu-I pool

b blu- blue

f fu-cl foocl

v vErl very

m mi-n mean

w wl we

T T-IGk think

D D-En then

t tu- two

d de- day

s slK sick

z nO-z- noise

n nA--t night

I IAk- llke



r

C

J

S

Z

Y

k

g

G

?

h

rAn

mAC-

JAg

S-i

da-Zlnt

(As In rouge

yet

kold

gEts

T-IG-

?M

horn-

run

much

just

she

doesnt

and belge)

yet

cold

gets

thing

um

home
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Vowels

I

I

e

E

@

A

A

a

u

U

S-i

wiT

ple-

wEnt

D-@t

mA

A-

nat

tu-

fUl-

she .

with

play

went

that

my

uh

not

two

full



o D-o---

0 bO-

c wc-k

W hW-

Combinations

though

boy

walk

how
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M -M

N iv-N

L lld-L-

Y -Y-

X siX

• ibn.

um

even

little

you

six

one
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SDM's performance on parity problem.

APPENDIX C

Parity Problem

This is the generalized XOR problem. The problem is to determine the

parity of the input vectors. The training set contained randomly drawn 16-bff

vectors as input and their correct parity as the output. Simulations were

conducted with different sizes of memory, different leamlng rates and different

training sets. This is a problem that cannot be learned from examples. The

performance was, however, unexpectedly very high. With little or no training,

the performance on both the training set and the test set was very high. This can

be explained by the select mechanism.

As explained eadler, SDM is based on a similarity based storage and

retrieval scheme. The locations are selected according to their similarity (or

rather, maximum dissimilarity) from a target address. Consider the total address

space of n bff vectors. This is given by 2n. Let, N (r) be the number of

locations selected with select radius r.

l,=r

N(r) = i!(n-i)!

Thus, it isclear that for 0 < r < n/2, a majority of locations selected are

exactly at a distance r from the target address. These locations are

responsible for influencing the output. Dr. Louis Jaeckel pointed out that a
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majorityofthe selected locationsare exactlyat a distance ofselectradiusfrom

the targetaddress.

Expanding on Dr.Jaeckers explanation, we give additionalarguments

Insupport of hisreasoning.

Two vectors which are separated by a Hamming distance of" 1" will have

opposite parity. Those separated by a Hamming distance of "2" units will have

the same parity. In general two vectors separated by a hamming distance of

odd units will have opposite parity and those separated by a Hamming distance

of even number of units will have the same parity. Assume that the select radius

is even. As pointed out by Dr. Jaeckel, a majority of the selected addresses will

be exactly at a distance of "r" from the target address. They will all have the

same parity as the target address. In addition, there will be addresses at a

distance of exactly "r-2* units, *r-4" units, "r-6* units ........ clown to "0" distance if r

is even. Thus, an overwhelming majority of addresses will have the correct pariS/

stored In their data counters. The memory will organize itself with a majority of

locations containing correct signal for each new vector that is stored. Similar

argument can be given for the case, when the radius of select is odd. Thus, as

long as the radius of select is fixed (I.e. write and read operations are performed

with the same radius), the memory will always compute correct parity of the

target address. In the actualization of the memory, a random sample of the

address space is taken to serve as actual addresses. For small values of n and r

it may be possible to get a wrong output for a very small number of vectors. But

the training procedure cluickly eliminates even this error. As the value of n and r



75

increases the memory starts giving correct output even without training In almost

all cases.

Thus, it Is clear that the selection mechanism of SDM makes it behave

as if it Is hard-wired to solve the parity problem.
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